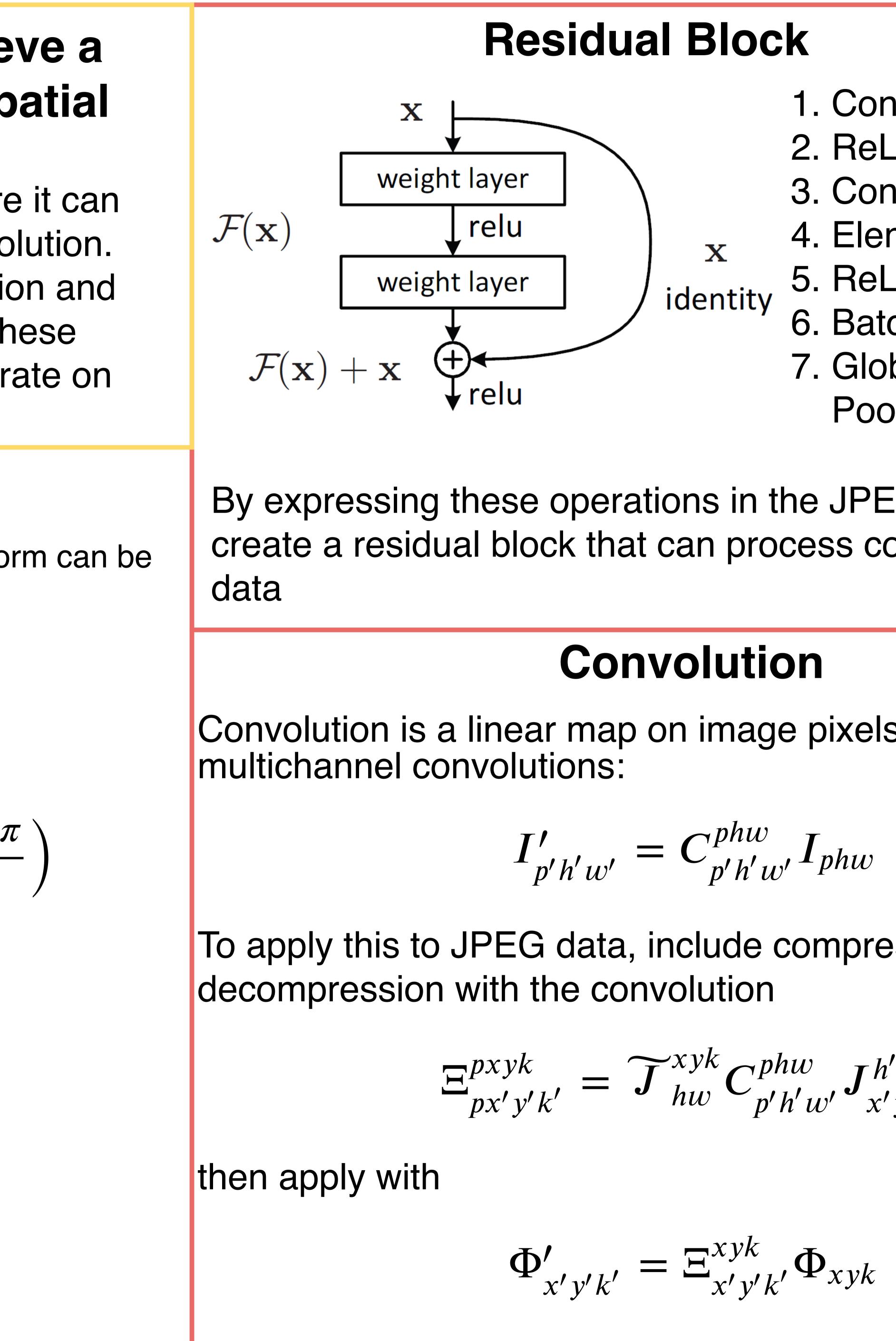


Deep Residual Learning in the JPEG Transform Domain Max Ehrlich and Larry Davis

We leverage the JPEG format to achieve a substantial inference speedup over spatial domain networks

JPEG is a linear transform of image pixels, therefore it can be combined with other linear transforms like convolution. Batch normalization likewise has a simple formulation and for ReLu we use an approximation. By defining these operations we create a residual block that can operate on compressed JPEG data.


The JPEG Transform as Tensors

Given an image as a tensor of shape h, w, the JPEG transform can be defined as a linear map as follows

$$B_{xymn}^{hw} = \begin{cases} 1 & h, w \text{ belongs in block } x, y \text{ at offset } m, n \\ 0 & \text{otherwise} \end{cases}$$

$$D_{\alpha\beta}^{mn} = \frac{1}{4} V(\alpha) V(\beta) \cos\left(\frac{(2m+1)\alpha\pi}{16}\right) \cos\left(\frac{(2n+1)\beta\pi}{16}\right) \cos\left(\frac$$

maxehr@umiacs.umd.edu lsd@umiacs.umd.edu https://gitlab.com/Queuecumber/jpeg-domain-resnet

ReLu

PEG domain, we	ReLu is nonlinear, we use a nove approximation technique by parti- decompressing each block and non- negative pixels. The mask is there to the compressed block using a spatial pixelwise multiplication. The preserves positive values which a preserved by the naive approxime		
compressed JPEG			
	Input	ReLu Ratoh	Naive
els. For	Batch Norm Mean: The mean of a JPEG bloc proportional to the 0th entry, so w simply extract it for each block to per-channel means		
ression and	Variance: Variance is equal to the of DCT coefficients (proved in this		
h'w'	Global Average Pool		
x' y' k' k	Extract 0th each block		Global A

their continued support of our work.